The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 0 X X 4X 2X 3X 0 X 3X 3X 3X 5X 2X 2X X 4X 2X 3X 4X 0 0 4X X X 3X 0 4X 6X 4X 0 6X 4X 3X 3X 6X X 2X 2X 3X 0 4X 5X 5X X 5X 3X 0 X 2X 0 X 2X 3X 4X 2X 2X 6X 4X 5X 5X 0 3X 5X 5X X 3X X 4X 6X 2X X 6X 4X 5X 3X 2X 2X 0 2X 2X 0 5X 6X X 2X 4X 5X X 0 0 3X 5X 0 0 0 X 0 5X 4X 3X 5X 6X 3X 3X 3X 5X 5X 4X 0 0 3X X 4X 2X X X 5X 0 X X X 5X 0 5X 2X 4X 4X 3X 4X 2X X 4X X 4X 3X 0 2X 2X 3X 0 0 3X 4X 5X 5X 5X 3X 6X 2X 0 X 4X 5X 5X 6X 0 6X X 4X 2X 6X 4X 3X 4X 3X 2X X 2X 2X 5X 6X 3X 3X 2X 5X 0 3X 2X 2X 6X 3X 4X 4X 0 2X 3X X 5X 5X 0 0 0 X 5X X 2X 6X 6X 4X X 0 2X 6X 6X 5X X 2X 5X X X 3X 2X 4X 5X 5X 2X 0 5X 4X 2X 4X 3X 6X X 3X 2X 6X 2X 6X 5X 3X 2X 3X X 3X 4X 5X 5X 6X 6X 3X 3X 3X 3X 6X 6X 4X 4X 0 3X 4X 0 X 3X 4X 5X 6X 5X 0 4X X 5X 4X X 6X 3X X X 0 2X 4X 4X 5X 4X 4X 0 2X 3X 2X X 4X 3X 5X 4X 2X generates a code of length 96 over Z7[X]/(X^2) who´s minimum homogenous weight is 553. Homogenous weight enumerator: w(x)=1x^0+240x^553+528x^560+462x^567+324x^574+14406x^576+210x^581+180x^588+144x^595+84x^602+54x^609+48x^616+48x^623+30x^630+6x^637+12x^644+12x^651+12x^658+6x^672 The gray image is a linear code over GF(7) with n=672, k=5 and d=553. This code was found by Heurico 1.16 in 0.613 seconds.